Code No.: 16648 N/O

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A+-- Grade

B.E. (I.T.) VI-Semester Main & Backlog Examinations, May/June-2023 Artificial Intelligence and Machine Learning

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

Part-A $(10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	СО	PC
1.	List various approaches to create intelligent systems?	2	1	1	1
2.	Outline problem characteristics which influence the solution for search problems?	2	2	1	1
3.	Define valid, consistent & incontinent logic formula.	2	1	2	1
4.	Relate bias and variance with overfitting and underfitting?	2	2	2	1
5.	What is overfitting in decision trees and how to correct it?	2	1	3	1
6.	What is feature selection and extraction?	2	1	3	1
7.	Explain XOR limitation of perceptron?	7-37	1	Const	1
8.	Explain maximum likelihood estimation?	2	2	4	1
9.	Distinguish reinforcement learning with unsupervised learning?	2	2	4	1
10.	Compare classification with clustering tasks?	2	4	5	2
	Part-B ($5 \times 8 = 40 \text{ Marks}$)	2	2	5	2
1. a)	Illustrate A-star algorithm with the help of 8-tiles puzzle?	4	2	1	1
b)	Relate various heuristics used in 16-tiles puzzle?	4	2	1	1 2
2. a)	Construct predicate calculus formula for the following:	5.0	3	2	2
	 Every student who makes good grades is brilliant or studies. Every student who is a CS major has some roommate. [Make 'roommate" a two-place predicate.] Every student who has any roommate who likes to party goes to Sixth Street. 		,	2	۷
	 Anyone who goes to Sixth Street does not study. (Conclusion) If every roommate of every CS major like to party, then every student who is a CS major and makes good grades is brilliant 				
b) i	Apply resolution refutation technique to prove the conclusion f	4 :	3	2	2

Code No.: 16648 N/O

13. a) Describe various approaches used to build recommendation systems.

4 1 3 1 4 3 3 2

b) Construct a root node for a decision tree with ID3 for the following data.

BRAND	COLOR	TIME	STOLEN
	- black	night	yes
BMW	black	night	no
AUDI	black	night	yes
NISSAN	red	day	yes
VEGA BMW	blue	day	no
AUDI	black	day	yes
VEGA	red	night	no
AUDI	blue	day	yes
VEGA	black	day	yes
BMW	black	night	yes

14. a) Infer forward and backward pass formulas for the following MLP neural network?

4 2 4 2

MLP having 2 inputs, 3 hidden neurons with RELU activation and 1 neuron in the output layer with logistic sigmoid activation.

b) Apply Naïve Bayes on the given example for <high, high, more, big, high> using the following dataset which describes the car evaluation dataset.

4 3 4 2

ng the follow	Maintenance		Bootspace	Safety	Evaluation
BuyingPrice	med	4	small	high	acc
vhigh		more	small	high	acc
vhigh	med	-	big	med	acc
high	high	more			acc
high	high	4	med	med	-
med	vhigh	more	big	high	acc
	low	more	small	med	acc
low	vhigh	2	small	low	unacc
vhigh		2	small	low	unacc
vhigh	vhigh		small	med	unacc
vhigh	med	2		med	unacc
vhigh	low	2	med	-	-
high	high	more	small	low	unacc
med	vhigh	more	small	low	unacc
	med	2	big	med	unacc
med		4	med	med	unacc
low	vhigh	2	small	low	unacc
low	med		-	low	
low	low	more			
low	low	more	e big	low	unacc

Code No.: 16648 N/O

15. a	Illustrate Q-learning algorithm for 3X3 2D Grid world?	_				
b	Apply K-means algorithm C. d. a.s.		4	3	5	2
	Apply K-means algorithm for the following dataset using k=3? $A1=(2,10)$, $A2=(2,5)$, $A3=(8,4)$, $A4=(5,8)$, $A5=(7,5)$, $A6=(6,4)$, $A7=(1,2)$, $A8=(4,9)$.	, '	4	3	5	2
	Assume A2, A5 & A8 are initial random centroids and employ Euclidean similarity metric.					
16. a)	Build states, actions and rules for the banana monkey problem described below. "A monkey is in a room. A bunch of bananas is hanging from the ceiling. The monkey cannot reach the bananas directly. There is a box in the corner of the room. How can the monkey get the bananas?"	4	3	3	1	2
b) 7.	Explain logistic regression algorithm in detail for binary classification? Answer any <i>two</i> of the following:	4	2	2	!	1
a)	What is max margin classifier? Define mathematical formulation for this optimization?	4	1	3		1
b)	Build perceptron for AND Boolean function?					
	Apply Q-learning to Tic-Tac-Toe 2-player game?	4	3	4		2
M :	: Marks; L: Bloom's Taxonomy Level; CO: Course Oute	4	3	5	2	,

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

(i	Blooms Town	ic, Program
ii)	Blooms Taxonomy Level – 1 Blooms Taxonomy Level – 2	20%
iii)	Blooms Taxonomy Level – 3 & 4	32.5%
	Turcholly Level – 3 & 4	47.5%
